Compare commits

..

6 Commits

Author SHA1 Message Date
cac25d6006 linear dimming 2025-10-07 19:10:43 +01:00
97079c7b10 dimming 2025-10-07 18:38:53 +01:00
d66914f74f remove debugging 2025-10-04 15:45:54 +01:00
42c18a6d5a brightness scaling optimization 2025-10-04 15:01:50 +01:00
e98a24d32d timer debugging 2025-10-04 14:14:10 +01:00
556ac72d10 refactoring 2025-08-05 20:13:11 +01:00
3 changed files with 106 additions and 65 deletions

View File

@@ -5,7 +5,7 @@ use arduino_hal::{
port::{mode::Output, Pin}, port::{mode::Output, Pin},
}; };
use crate::DISPLAY_SEGMENTS; use crate::{DISPLAY_SEGMENTS, IO_SEGMENT_ON_MAX_US, IO_SEGMENT_ON_MIN_US};
pub struct SegmentPins { pub struct SegmentPins {
kd_seg_a: Pin<Output, PD5>, kd_seg_a: Pin<Output, PD5>,
@@ -82,18 +82,42 @@ impl SegmentPins {
} }
#[derive(Clone, Copy, PartialEq, Eq)] #[derive(Clone, Copy, PartialEq, Eq)]
pub struct Brightness(pub u8); pub struct Brightness(u8);
impl Brightness {
pub const fn new(b: u8) -> Brightness {
Brightness(b)
}
pub const fn full() -> Brightness {
Brightness(u8::MAX)
}
pub const fn unwrap(self) -> u8 {
self.0
}
pub fn dimm(self, dimming: u8) -> Brightness {
Brightness(self.0.saturating_sub(dimming))
}
// Scales brightness (0-255) to range between IO_SEGMENT_ON_MIN_US and IO_SEGMENT_ON_MAX_US
pub fn scale_brightness(self) -> u32 {
// Using >> to avoid 32bit division which take ~576 cycles
IO_SEGMENT_ON_MIN_US + ((IO_SEGMENT_ON_MAX_US - IO_SEGMENT_ON_MIN_US) * self.0 as u32 >> 8)
}
}
#[derive(Clone, Copy, PartialEq, Eq)] #[derive(Clone, Copy, PartialEq, Eq)]
pub struct Segment(u8, Brightness); pub struct Segment(u8, Brightness);
impl Segment { impl Segment {
pub fn new() -> Segment { pub fn new() -> Segment {
Segment(0, Brightness(0xFF)) Segment(0, Brightness::full())
} }
pub fn brightness(&mut self, b: u8) -> &mut Self { pub fn brightness(&mut self, b: Brightness) -> &mut Self {
self.1 = Brightness(b); self.1 = b;
self self
} }

View File

@@ -12,7 +12,7 @@ use avr_device::{
asm::sleep, asm::sleep,
interrupt::{CriticalSection, Mutex}, interrupt::{CriticalSection, Mutex},
}; };
use core::cell::RefCell; use core::cell::{Cell, RefCell};
use core_decimal_calc::{ use core_decimal_calc::{
calc::{StackCalc, StackCalcError}, calc::{StackCalc, StackCalcError},
Decimal, Decimal,
@@ -22,8 +22,6 @@ use keyboard::{Debounce, KeyPress, KeyReadout, Keyboard};
use arduino_hal::{ use arduino_hal::{
adc::channel::{ADC6, ADC7}, adc::channel::{ADC6, ADC7},
hal::port::PB5,
port::{mode::Output, Pin},
Adc, Adc,
}; };
use ufmt::derive::uDebug; use ufmt::derive::uDebug;
@@ -52,9 +50,11 @@ pub const IO_SEGMENT_RATE_US: u32 = 1000; // Time in μs between segment updates
pub const IO_SEGMENT_ON_MIN_US: u32 = 80; // How long in μs to hold segment LEDs on (dark) pub const IO_SEGMENT_ON_MIN_US: u32 = 80; // How long in μs to hold segment LEDs on (dark)
pub const IO_SEGMENT_ON_MAX_US: u32 = 700; // How long in μs to hold segment LEDs on (bright) pub const IO_SEGMENT_ON_MAX_US: u32 = 700; // How long in μs to hold segment LEDs on (bright)
const fn scale_brightness(b: u8) -> u32 { // Dimming
IO_SEGMENT_ON_MIN_US + (IO_SEGMENT_ON_MAX_US - IO_SEGMENT_ON_MIN_US) * b as u32 / 0xFF pub const DISPLAY_FPS: u16 = (1_000_000 / (IO_SEGMENT_RATE_US * DISPLAY_SEGMENTS as u32)) as u16;
} pub const DISPLAY_DIMM_FRAMES: u16 = DISPLAY_FPS * 10; // How many frames of inactivity before dimming
pub const DISPLAY_DIMM_SPEED: u8 = 4; // Dimm by amount every frame when sleeping
pub const DISPLAY_UNDIMM_SPEED: u8 = 16; // Brighten by amount every frame when not sleeping
// Calculator setup // Calculator setup
pub const STACK_DEPTH: usize = 7; pub const STACK_DEPTH: usize = 7;
@@ -67,51 +67,46 @@ type Calc = StackCalc<f32, STACK_DEPTH, 5, u8>;
// * Set another timer to run for 1ms. // * Set another timer to run for 1ms.
// * On another timer interrupt expire disable display (LEDs off) and handle keyboard input. // * On another timer interrupt expire disable display (LEDs off) and handle keyboard input.
static LED: Mutex<RefCell<Option<Pin<Output, PB5>>>> = Mutex::new(RefCell::new(None)); // Values shared between main and interrupt handlers
static IO_LOOP: Mutex<RefCell<Option<IOLoop>>> = Mutex::new(RefCell::new(None)); type Global<T> = Mutex<Cell<T>>;
static KEY_PRESS: Mutex<RefCell<Option<KeyPress>>> = Mutex::new(RefCell::new(None)); type RefGlobal<T> = Mutex<RefCell<Option<T>>>;
static ADC: Mutex<RefCell<Option<Adc>>> = Mutex::new(RefCell::new(None));
static SEGMENT_TIMER: Mutex<RefCell<Option<SegmentTimer>>> = Mutex::new(RefCell::new(None));
fn try_access<'cs, 'v: 'cs, T, O>( static IO_LOOP: RefGlobal<IOLoop> = Mutex::new(RefCell::new(None));
static KEY_PRESS: Global<Option<KeyPress>> = Mutex::new(Cell::new(None));
static ADC: RefGlobal<Adc> = Mutex::new(RefCell::new(None));
static SEGMENT_TIMER: RefGlobal<SegmentTimer> = Mutex::new(RefCell::new(None));
fn access_global<'cs, 'v: 'cs, T, O>(
v: &'v Mutex<RefCell<Option<T>>>, v: &'v Mutex<RefCell<Option<T>>>,
cs: CriticalSection<'cs>, cs: CriticalSection<'cs>,
f: impl for<'t> FnOnce(&'t mut T) -> O, f: impl for<'t> FnOnce(&'t mut T) -> O,
) -> Option<O> { ) -> O {
if let Some(mut v) = v.borrow(cs).try_borrow_mut().ok() { let mut v = v.borrow(cs).borrow_mut();
if let Some(v) = v.as_mut() { f(v.as_mut().unwrap())
return Some(f(v));
}
}
None
} }
#[avr_device::interrupt(atmega328p)] #[avr_device::interrupt(atmega328p)]
unsafe fn TIMER0_COMPA() { unsafe fn TIMER0_COMPA() {
avr_device::interrupt::free(|cs| { avr_device::interrupt::free(|cs| {
// try_access(&LED, cs, |led| led.set_high()).expect("LED not available (COMPA)"); access_global(&IO_LOOP, cs, |io_loop| {
let brightness = try_access(&IO_LOOP, cs, |io_loop| io_loop.display_on()); access_global(&SEGMENT_TIMER, cs, |st| {
if let Some(brightness) = brightness { let brightness = io_loop.display_on();
try_access(&SEGMENT_TIMER, cs, |st| { st.segment_on_time(brightness.scale_brightness());
st.segment_on_time(scale_brightness(brightness.0)) });
}); });
}
}); });
} }
#[avr_device::interrupt(atmega328p)] #[avr_device::interrupt(atmega328p)]
unsafe fn TIMER0_COMPB() { unsafe fn TIMER0_COMPB() {
avr_device::interrupt::free(|cs| { avr_device::interrupt::free(|cs| {
// try_access(&LED, cs, |led| led.set_low()).expect("LED not available (COMPB)"); access_global(&IO_LOOP, cs, |io_loop| {
try_access(&IO_LOOP, cs, |io_loop| {
io_loop.display_off(); io_loop.display_off();
try_access(&ADC, cs, |adc| { access_global(&ADC, cs, |adc| {
io_loop.read_key(adc); io_loop.read_key(adc);
}); });
if let Some(key) = io_loop.advance() { if let Some(key) = io_loop.advance() {
if let Some(mut key_press) = KEY_PRESS.borrow(cs).try_borrow_mut().ok() { KEY_PRESS.borrow(cs).replace(Some(key));
key_press.replace(key);
}
} }
}); });
}); });
@@ -119,24 +114,30 @@ unsafe fn TIMER0_COMPB() {
pub struct IOLoop { pub struct IOLoop {
index: usize, index: usize,
frame: u16,
io_pins: IOPins, io_pins: IOPins,
segment_pins: SegmentPins, segment_pins: SegmentPins,
dispaly: DispalyState, dispaly: DispalyState,
keyboard: Keyboard, keyboard: Keyboard,
readount: Option<KeyReadout>, readount: Option<KeyReadout>,
debounce: Debounce, debounce: Debounce,
sleep_timer: u16,
dimming: u8,
} }
impl IOLoop { impl IOLoop {
pub fn new(io_pins: IOPins, segment_pins: SegmentPins, keyboard: Keyboard) -> IOLoop { pub fn new(io_pins: IOPins, segment_pins: SegmentPins, keyboard: Keyboard) -> IOLoop {
IOLoop { IOLoop {
index: 0, index: 0,
frame: 0,
io_pins, io_pins,
segment_pins, segment_pins,
dispaly: Default::default(), dispaly: Default::default(),
keyboard, keyboard,
readount: None, readount: None,
debounce: Default::default(), debounce: Default::default(),
sleep_timer: 0,
dimming: u8::MAX,
} }
} }
@@ -155,22 +156,47 @@ impl IOLoop {
pub fn advance(&mut self) -> Option<KeyPress> { pub fn advance(&mut self) -> Option<KeyPress> {
self.index += 1; self.index += 1;
if self.index == self.io_pins.len() || self.index == self.dispaly.len() { if self.index == self.io_pins.len() || self.index == self.dispaly.len() {
// Frame done
self.frame = self.frame.wrapping_add(1);
// Start from first segment // Start from first segment
self.index = 0; self.index = 0;
// Full keyboard scan complete, debounce and return result // Full keyboard scan complete, debounce
self.debounce.input(self.readount.take()) let key = self.debounce.input(self.readount.take());
// Reset or advance sleep timer
if key.is_some() {
self.sleep_timer = 0;
} else {
self.sleep_timer = self.sleep_timer.saturating_add(1);
}
if self.is_sleep() {
self.dimming = self.dimming.saturating_add(DISPLAY_DIMM_SPEED);
} else {
self.dimming = self.dimming.saturating_sub(DISPLAY_UNDIMM_SPEED);
}
key
} else { } else {
None None
} }
} }
pub fn is_sleep(&self) -> bool {
self.sleep_timer >= DISPLAY_DIMM_FRAMES
}
pub fn dimming(&self) -> u8 {
self.dimming
}
pub fn display_on(&mut self) -> Brightness { pub fn display_on(&mut self) -> Brightness {
self.select_off(); self.select_off();
let segment = self.dispaly[self.index]; let segment = self.dispaly[self.index];
let brighness = segment.apply(&mut self.segment_pins); let brighness = segment.apply(&mut self.segment_pins);
self.select_on(); self.select_on();
brighness brighness.dimm(self.dimming)
} }
pub fn display_off(&mut self) { pub fn display_off(&mut self) {
@@ -185,6 +211,10 @@ impl IOLoop {
} }
self.select_off(); self.select_off();
} }
pub fn frame(&self) -> (u16, usize) {
(self.frame, self.index)
}
} }
#[derive(uDebug)] #[derive(uDebug)]
@@ -522,7 +552,6 @@ fn main() -> ! {
); );
let keyboard = Keyboard::new(ADC7, ADC6); let keyboard = Keyboard::new(ADC7, ADC6);
let io_loop = IOLoop::new(io_pins, segment_pins, keyboard); let io_loop = IOLoop::new(io_pins, segment_pins, keyboard);
let led = pins.d13.into_output();
let adc = Adc::new(dp.ADC, Default::default()); let adc = Adc::new(dp.ADC, Default::default());
let segment_timer = SegmentTimer::init(dp.TC0, IO_SEGMENT_RATE_US); let segment_timer = SegmentTimer::init(dp.TC0, IO_SEGMENT_RATE_US);
@@ -538,7 +567,6 @@ fn main() -> ! {
}; };
avr_device::interrupt::free(|cs| { avr_device::interrupt::free(|cs| {
LED.borrow(cs).replace(Some(led));
IO_LOOP.borrow(cs).replace(Some(io_loop)); IO_LOOP.borrow(cs).replace(Some(io_loop));
ADC.borrow(cs).replace(Some(adc)); ADC.borrow(cs).replace(Some(adc));
SEGMENT_TIMER.borrow(cs).replace(Some(segment_timer)); SEGMENT_TIMER.borrow(cs).replace(Some(segment_timer));
@@ -550,7 +578,7 @@ fn main() -> ! {
loop { loop {
let mut key = None; let mut key = None;
avr_device::interrupt::free(|cs| { avr_device::interrupt::free(|cs| {
key = KEY_PRESS.borrow(cs).borrow_mut().take(); key = KEY_PRESS.borrow(cs).take();
}); });
if let TransientState::Done = state.transient { if let TransientState::Done = state.transient {
@@ -609,18 +637,16 @@ fn main() -> ! {
.take(calc.len()) .take(calc.len())
{ {
seg.dp(); seg.dp();
} seg.brightness(Brightness::full());
for (no, seg) in display.slice(0, DISPLAY_SEGMENTS).iter_mut().enumerate() {
seg.brightness((no * 0xFF / DISPLAY_SEGMENTS) as u8);
} }
} }
TransientState::Err { .. } => display.error(), TransientState::Err { .. } => display.error(),
} }
avr_device::interrupt::free(|cs| { avr_device::interrupt::free(|cs| {
try_access(&IO_LOOP, cs, |io_loop| { access_global(&IO_LOOP, cs, |io_loop| {
io_loop.update_display(&display); io_loop.update_display(&display);
}); })
}); });
} }
} }

View File

@@ -5,16 +5,14 @@ const TIMER_PRESCALE: u32 = 64;
// Timer clock tick rate per second // Timer clock tick rate per second
const TIMER_FREQ: u32 = DefaultClock::FREQ / TIMER_PRESCALE; const TIMER_FREQ: u32 = DefaultClock::FREQ / TIMER_PRESCALE;
// How much time in μs to reserve for post LED off operation (keyboard read)
const BUFFER_US: u32 = 250;
const BUFFER_TICKS: u32 = us_to_ticks(BUFFER_US);
const fn us_to_ticks(us: u32) -> u32 { const fn us_to_ticks(us: u32) -> u32 {
TIMER_FREQ * us / 1_000_000 TIMER_FREQ * us / 1_000_000
} }
// Timer 0 (8bit) // Timer 0 (8bit)
pub struct SegmentTimer(TC0); pub struct SegmentTimer {
timer: TC0,
}
impl SegmentTimer { impl SegmentTimer {
// Sets up timer to rise interrupts: // Sets up timer to rise interrupts:
@@ -40,24 +38,17 @@ impl SegmentTimer {
tc0.timsk0 tc0.timsk0
.write(|w| w.ocie0a().set_bit().ocie0b().set_bit()); .write(|w| w.ocie0a().set_bit().ocie0b().set_bit());
SegmentTimer(tc0) SegmentTimer { timer: tc0 }
} }
// Set for how long the segment LEDs should be on in μs // Set for how long the segment LEDs should be on in μs
// Controls TIMER0_COMPB interrupt time after TIMER0_COMPA // Controls TIMER0_COMPB interrupt time after TIMER0_COMPA
pub fn segment_on_time(&mut self, segment_on_us: u32) { pub fn segment_on_time(&mut self, segment_on_us: u32) {
let ocra = self.0.ocr0a.read().bits(); let delay: u8 = us_to_ticks(segment_on_us)
let ocrb = us_to_ticks(segment_on_us); .try_into()
assert!( .expect("timer init segment_on_us out of rage");
ocra as u32 > ocrb + BUFFER_TICKS, let elapsed = self.timer.tcnt0.read().bits();
"segment_on_us cannot be longer than segment_switch_us - buffer"
);
// Set the compare value for B match // Set the compare value for B match
self.0.ocr0b.write(|w| { self.timer.ocr0b.write(|w| w.bits(elapsed + delay));
w.bits(
ocrb.try_into()
.expect("timer init segment_on_us out of rage"),
)
});
} }
} }